
Learning 3D Part Detection from Sparsely Labeled Data

Ameesh Makadia
Google

New York, NY 10011
makadia@google.com

Mehmet Ersin Yumer
Carnegie Mellon University

Pittsburgh, PA 15213
meyumer@cmu.edu

Abstract—For large collections of 3D models, the ability to
detect and localize parts of interest is necessary to provide
search and visualization enhancements beyond simple high-
level categorization. While current 3D labeling approaches rely
on learning from fully labeled meshes, such training data is
difficult to acquire at scale. In this work we explore learning to
detect object parts from sparsely labeled data, i.e. we operate
under the assumption that for any object part we have only
one labeled vertex rather than a full region segmentation.
Similarly, we also learn to output a single representative vertex
for each detected part. Such localized predictions are useful for
applications where visualization is important. Our approach
relies heavily on exploiting the spatial configuration of parts
on a model to drive the detection. Inspired by structured
multi-class object detection models for images, we develop an
algorithm that combines independently trained part classifiers
with a structured SVM model, and show promising results on
real-world textured 3D data.

I. INTRODUCTION

Navigating large online collections of 3D objects is still
restricted by limited search capabilities (e.g. Yeggi1 and 3D
Warehouse2 provide a simple text based search, while the
latter also provides a similar-shape search based only on
global shape similarity). Understanding objects at a part or
component level will be critical for the next generation of 3D
search, analysis, and visualization. To this end we consider
the problem of automatically detecting the parts of a 3D
model.

Recent efforts towards 3D mesh labeling (e.g. [13], [26])
operate under the strong assumption that fully segmented
and labeled meshes are available for training. This require-
ment makes it difficult to scale the proposed solutions to
a real-world setting since collecting this kind of training
data requires monumental human effort. We suggest an
alternative approach of learning from sparsely labeled 3D
objects (e.g. for a camera model, the presence and location
of the lens would be indicated by a single labeled vertex on
the mesh). While learning from a minimal labeling presents
a unique challenge (since there is no indication as to the
shape or scale of the object parts), collecting large training
datasets of this form is more realistic since users would have

1http://www.yeggi.com/
2http://3dwarehouse.sketchup.com

Figure 1. Examples where localized annotations enhance product
visualization: left: maybe3d.com, right: dillards.com

to indicate only a single point per object part rather than
providing a complex region boundary.

To complement our training data, our objective is also to
predict highly localized annotations and call out a single
representative vertex per detected component. Identifying
object components by highlighting a single vertex is impor-
tant for visualization tasks (see fig. 1). To produce localized
annotations, our approach is built upon the observation that
the spatial configuration between object parts provides a
crucial cue towards their discrimination. For example, while
the different types of buttons on an electronic device may
not be distinguishable from each other in terms of shape
or appearance, their layout on the device may provide the
strongest indication of their function. Inspired by the success
of contextual layout models applied to object recognition in
images, we propose a spatial layout model for 3D object
part detection.

In this paper we introduce (to our knowledge) the first
textured 3D model part labeling algorithm designed to
learn from sparse labels and to predict localized detections.
Our approach utilizes a spatial layout model that builds
upon contextual models used for multi-class object detec-
tion in images, specifically [5] . We present an algorithm
that combines independently trained part classifiers with a
structured SVM model. Promising experimental results on
unique large-scale datasets of real-world textured 3D objects
confirm that spatial layout is vital signal for part detection.

A. Related Work

The problem of mesh labeling has largely been ap-
proached via segmentation (see [20], [8], [10], [22]). Most
similar to our work are the supervised approaches for joint

http://www.yeggi.com/
http://3dwarehouse.sketchup.com
maybe3d.com
dillards.com

segmentation and labeling [13], [26]. For example [13]
employs a contextual CRF [16] model where the spatial
term encodes the smoothness constraint for labels of adjacent
mesh faces. These methods require densely labeled training
data which limits their application at scale. Furthermore,
they cannot be adapted in a straightforward manner to our
task since spatial smoothness is not a constraint that can be
applied to our sparse labeling setting.

Our problem setting is most similar to that of multi-class
object detection in images (the components to be detected in
3D model are analogous to the object classes that can appear
in an image). Structured prediction techniques [25], [23],
[16] have regularly been utilized for labeling, segmentation,
and detection problems in images. The most common ap-
proaches treat labeling as learning and inference on graphical
models. Neighborhood edges provide for smoothness, and
“long range” edges can be used to encode the spatial layout
(see [9], [14], [29] among others).

Deformable part models provide an appealing framework
for representing the part configurations within an object
category [6], [7]. Here object appearance is represented
by a single root model and individual part models, and
the layout score is determined by the spatial placement of
the parts relative to the root. Human-selected vertices in
CAD models have been used to train deformable models
for pose estimation in images [30]. The spatial layout model
presented in [5] utilizes a two-stage approach for multi-class
object detection in images. Independently trained sliding
window object detectors are combined with a structured pre-
diction step that enforces a learned spatial layout model. Our
approach follows this framework: individual 3D object part
classifiers are learned from the sparsely labeled training data,
and subsequently a structured-SVM model that captures all
the pairwise relationships between object parts is trained. In
the following sections we detail our approach.

II. 3D PART DETECTION AS STRUCTURED PREDICTION

We focus our attention on labeling 3D models belong-
ing to the same category (in practical applications, the
category can be discerned from associated text descrip-
tions or metadata, or reliably determined from automated
techniques [19]). In our setting a textured 3D object is
represented by a triangulated mesh and an associated image
texture map. We let the mesh provide the discretization:
each triangle is an independent node that can be positively
detected as an object part. For a mesh with n triangles, we
select the n triangle centroids to comprise the vertex set X
input to the detection task: X =

{
xi ∈ R3|i = 1, . . . , n

}
.

Let D =
{
l1, l2, . . . , l|D|

}
be the dictionary of parts for

the category (e.g. for the category camera, D ={lens, flash,
on/off button, tripod socket, . . . }). The labels we assign to
detected parts will come from D, but since large areas of
the object may not belong to any part in the dictionary, we
include a background label lb in the final label set: Y =

D ∪ {lb}. A labeling of an object assigns a label from Y to
each vertex: Y (X) = {yi ∈ Y|i = 1, . . . , n} (we will write
Y instead of Y (X) for simplicity). At training, we are given
models paired with ground truth vertex labels (X,Y). Note,
as discussed earlier Y is a sparse labeling, meaning for any
object part all but one representative vertex within the part
region will be labeled as background (lb).

Our task is to predict a labeling Y given a previously
unseen model X . The output Y has the same sparsity re-
quirement as the input training data (only one representative
vertex should be labeled as non-background per detected
part). Any vertex with yi 6= lb will be considered a unique
positive part detection. For our purposes the representative
vertex we are trying to detect should reflect the detections
provided at training time. This is motivated by studies
that indicate the user-selected vertices we see at training
are likely to be good representatives for visualization and
identification [3]. Thus, our task boils down to predicting
the same type of sparse detections that are provided in the
ground truth training data. Let us define the score of an
object labeling as

S(X,Y) =
∑
i,j

s2(xi, yi, xj , yj) +
∑
i

s1(xi, yi) (1)

Intuitively, the score s1 measures how well the local ge-
ometry and appearance of vertex xi matches that of the
training points labeled as yi. The score s2 measures how
well the relative spatial configuration of vertices xi and xj
matches that of training vertex pairs labeled with yi and yj .
The detection task is to compute the best labeling for a 3D
object: Ỹ = arg maxY S(X,Y).

Since there exist |Y|n labeling variations, we utilize
powerful discriminative classifiers to reduce the output space
and guide the detection. Let cy(xi) be a binary classifier
trained for class y ∈ D, such that cy(xi) > 0 for a
positive classification (see the following section for classifier
details). We reduce the set of vertices to be labeled and the
corresponding pool of potential labels:

X = {xi | ∃y ∈ D s.t. cy(xi) > 0} (2)
Y = {yi | yi ∈ Y \ {y ∈ D|cy(xi) ≤ 0}} (3)

Following [5] we utilize a simple linear model for the
scoring functions s1 and s2. While we have freedom to
choose the vertex representation f(xi), we use the positive
classifier detection score as the vertex feature as in [5]:
f(xi) = [cyi(xi), 1]

T (the 1 is appended to help capture
inter-class classifier score biases at training). This definition
of f(xi) assumes only one classifier has fired for vertex xi.
For multiple classifications at the same vertex, it is straight-
forward to produce an f(xi) for each positive classifier,
but we omit this here to keep the notation simple. We can
now write s1(xi, yi) = wTyif(xi), where wyi ∈ R2 are the
weights for class yi ∈ Y to be learned at training.

Figure 2. (a) normalized geodesic distance to the selected face,
(b) geodesic distance bins, (c) angle between face normals of the
selected face and others, (d) angle bins.

To capture the pairwise spatial relationships between
vertices, we choose a straightforward quantization of relative
distance and orientation:

d(xi, xj) = min (2, bg(xi, xj)/σXc) (4)
θ(xi, xj) = min

(
2,
⌊
3 arccos(x̂Ti x̂j)/π

⌋)
(5)

Here g(xi, xj) is the geodesic distance between vertices
(which we approximate with shortest path distances), σX
is a scale normalizer computed as the 15th percentile of
all-pairs geodesic distances on the mesh, and x̂i is the unit
surface normal at xi. Both relative distance and orientation
are quantized into one of three values.3 Fig. 2 shows an
example of the quantization. The final binning for spatial
layout is given with α(xi, xj) ∈ {0, 1}9 where

α(xi, xj)k =

{
1 if k == 3d(xi, xj) + θ(xi, xj)
0 otherwise

We define s2(xi, yi, xj , yj) = wTyi,yjα(xi, xj), where
wyi,yj ∈ R9 are the weights for labels yi and yj appearing
in the 9 different spatial configurations. Note, the spatial
layout terms are symmetric (α(xi, xj) = α(xj , xi), wyi,yj =
wyj ,yi). Eq 1 is now:

S(X,Y) =
∑
i,j

wTyi,yjα(xi, xj) +
∑
i

wTyif(xi) (6)

Note, we constrain all weights involving the background
label to be 0 (i.e. if yi = lb then wyi = 0 and wyi,yj =
wyj ,yi = 0. This is not strictly required but speeds up
inference. In the next section we detail the process of
learning classifiers cyi .

3Although it is trivial to generalize this for a finer quantization, we found no benefit in our experiments with
additional bins and performance begins to drop beyond 5 bins for each of d, θ (this could be explained by the limited
number of pairwise observations at training).

A. Vertex classification

The classifiers cy contribute significantly to our part detec-
tion pipeline (e.g. we are unable to recover from false nega-
tives from cy). A crucial input to building robust classifiers
is selecting appearance and shape features that can be useful
for part discrimination. We adopt the geometry features
from [13] which contribute the most for mesh classification:
Spin Images [12], 3D Shape Contexts [1], Curvature, and
PCA coefficients. In addition to surface geometry, the appear-
ance of a model provides rich information for discrimination.
For any surface point, we orthographically project the model
texture along the surface normal direction [28], and compute
a Sift [17] descriptor in the rendered image plane. At each
vertex the descriptors are extracted at multiple scales and
concatenated into a single 426-dimensional vector ~x.

We choose to compute cy as a one-vs-all binary
polynomial-kernel SVM classifier [4] trained over descrip-
tors ~x (cy is the SVM decision score and cy > 0 indicates
a positive classification for label y). 4

B. Inference

Generating a final set of detections for a model re-
quires computing arg maxY S(X,Y). The most common
approaches to inference on graphical models with cycles are
message passing algorithms such as Loopy Belief Propaga-
tion (LBP) and Tree Re-Weighted Belief Propagation [27],
[15]. Drawbacks to these approximate inference methods
include no guarantees on convergence (LBP) and high
computational complexity (e.g. for fully connected graphs).
A greedy forward search was presented in [5] which showed
performance comparable to LBP. In our setting, this greedy
search can be described with the following steps: (1) initial-
ize all vertices with the label lb, (2) select the vertex that
when labeled as non-background would increase S(X,Y)
by the largest value, (3) repeat step (2) until no score-
increasing vertex remains. The biggest advantage of the
greedy search is large speedup over the message passing
algorithms. However, in our experiments we found this
forward search often led to configurations for Y that were
quite far from the LBP-generated solution. As an alternative,
we introduce a more general greedy search. Our approach
follows [5] with the distinction that we also allow deselec-
tions (returning a selected vertex to have the label lb) and
vertex-pair toggling. Before presenting the pseudo-code, let
{(x, y)|y ∈ D, cy(x) > 0} be the set of vertex-label pairs
from which we are trying to select our final detections, and
let I(x,y) ∈ {−1, 1} be an indicator function (I(x,y) = 1
implies x has been labeled with y in the final output). The
pseudo-code is given in algorithm 1. To keep the pseudocode
simple we assume each vertex has only one potential object
part label. To handle multiple classifications per vertex, we
simply disallow selecting the pair (x, y) if there already

4See the supplementary file for more details.

Algorithm 1 Greedy Inference
1: Initialize: I(x,y) = −1, ∆(x, y) = 0, and S = 0
2: z(x, y) = s1(x, y) + ∆(x, y)
3: (x∗, y∗) = arg max

(x,y)s.t.I(x,y)=−1

z(x, y)

4: if z(x∗, y∗) ≥ 0 then . Select
5: ∆(x, y) = ∆(x, y) + 2s2(x, y, x∗, y∗)
6: S = S + z(x∗, y∗)
7: I(x∗,y∗) = 1
8: GOTO step 2
9: end if

10: (x∗, y∗) = arg min
(x,y)s.t.I(x,y)=1

z(x, y)

11: if z(x∗, y∗) < 0 then . Deselect
12: ∆(x, y) = ∆(x, y) − 2s2(x, y, x∗, y∗)
13: S = S − z(x∗, y∗)
14: I(x∗,y∗) = −1
15: GOTO step 2
16: end if
17: z1(x, y, x′, y′) = −I(x,y)z(x, y) − I(x′,y′)z(x

′, y′) +
2I(x,y)I(x′,y′)s2(x, y, x′, y′)

18: (x∗, y∗, x∗
′
, y∗
′
) = arg max

x,y,x′,y′
z1(x, y, x′, y′)

19: if z1(x∗, y∗, x∗
′
, y∗
′
) > 0 then . Toggle

20: S = S + z1(x∗, y∗, x∗
′
, y∗
′
)

21: ∆(x, y) = ∆(x, y) − 2I(x∗,y∗)s2(x, y, x∗, y∗)

22: ∆(x, y) = ∆(x, y) − 2I(x∗′ ,y∗′)s2(x, y, x∗
′
, y∗
′
)

23: I(x∗,y∗) = −I(x∗,y∗)
24: I(x∗′ ,y∗′) = −I(x∗′ ,y∗′)
25: GOTO step 3
26: end if
27: terminate

exists a selection for that vertex (i.e. I(x,y′) = 1, y′ 6= y).
At each iteration we prioritize selecting a single vertex-label
pair over deselecting and toggling. Intuitively, this algorithm
can be viewed as initialization with a greedy forward search
followed by select-deselect-toggle improvements (note that
the deselect and toggle steps can only increase the score).

C. Learning

We now discuss learning the weights wyi,yj and wyi in
our scoring function S(X,Y) (eq. 6). We will formulate our
task as a regularized learning problem which can be directly
optimized with the structured SVM algorithm [25]. We first
rewrite our scoring function S(X,Y) with a joint feature
map:

s1(x, y) = wTy f(x) = wTs1fs1(x, y) (7)

s2(xi, yi, xj , yj) = wTyi,yjα(xi, xj) (8)

= wTs2αs2(xi, yi, xj , yj) (9)

Letting df be the dimensionality of f(x) (df = 2), then
ws1 ∈ R(df∗|Y|) (each of the |Y| blocks of df dimen-
sions corresponds to one of the wy). Similarly fs1(x, y) ∈
R(df∗|Y|) with values of f(x) in the dimensions correspond-
ing to label y. Letting K be the dimensionality of α(xi, xj)

(K = 9), then ws2 ∈ R(K|Y|2) (each of the |Y|2 blocks of

K dimensions corresponds to one of the wyi,yj). Similarly,
αs2(xi, yi, xj , yj) ∈ R(K|Y|2) with values of α(xi, xj) in
the dimensions corresponding to (yi, yj). We now have

S(X,Y) = wTΨ(X,Y), (10)

w =

[
ws1
ws2

]
,Ψ(X,Y) =

[∑
i fs1(xi, yi)∑

i,j αs2(xi, yi, xj , yj)

]
Letting N be the number of ground-truth labeled training ex-
amples (Xi, Yi), the regularized learning of w with margin-
rescaling structured SVM [25] is:

min
w,ξ

1

2
‖w‖2 +

C

N

N∑
i=1

ξi

s.t.∀i,∀Y ′ : wT (Ψ(Xi, Yi)−Ψ(Xi, Y
′))

≥ L(Xi, Yi, Y
′)− ξi (11)

We select a decomposable loss function L(X,Y, Y ′) =∑
i l(xi, yi, y

′
i) where

l(xi, yi, y
′
i) =

 1 if y′i 6= lb ∧ @xj ∈ V (xi) s.t. yj = y′i
1 if y′i = lb ∧ y′i 6= yi
0 otherwise

This loss penalizes detections if they are outside the neigh-
borhood of the ground truth location (V (x)). In our experi-
ments the neighborhood radius is set to the median distance
between all adjacent vertices (e.g. for a uniform mesh V (x)
would contain x and the one-ring neighbors of x). This loss
is more forgiving than a hamming loss, and in our case
necessary since we cannot reasonably expect to select exact
vertices for detection.

To optimize eq. 11 we utilize the cutting plane
method [11], which during optimization requires the com-
putation of the “most violated” constraint:

arg max
Y ′

L(X,Y, Y ′)− wT (Ψ(X,Y)−Ψ(X,Y ′)) =

arg max
Y ′

L(X,Y, Y ′) + wTΨ(X,Y ′) (12)

The contribution of the decomposable loss function above
can be folded into the weight vector. This means algo-
rithm 1 can be modified trivially to also provide a solution
for eq. 12. Having defined the joint feature map Ψ, loss
function L, and approximate inference for the most violated
constraint, the cutting plane optimization for eq. 11 is
performed with the implementation provided in SVMstruct

(svmlight.joachims.org).

D. Part multiplicity

To complement the detection algorithm presented above,
we will utilize observations on object part multiplicity to
further constrain our predictions. An intra-object multiplicity
constraint makes practical sense for 3D objects (e.g. it is not
unreasonable to limit the number of lenses on a camera, or
legs on a human). The multiplicity of label y′ in training

svmlight.joachims.org

Figure 3. Sample models and human annotations from the cameras
set (top) and video recorders set (bottom).

example n is defined as τn,y′ =
∑
i δ(yi == y′). The upper

bound multiplicity for label y′ is set as the max of all train-
ing examples: τ(y′) = max {τn,y′ |n = 1, . . . , N} (we set
τ(lb) =∞). For any 3D model in which we apply our part
detection algorithm, we require

∑
i δ(yi == y′) ≤ τ(y′).

This requirement is easily applied in our greedy inference
(sec II-B). At each iteration, we only consider a vertex-label
pair (x, y′) for selection (either during a forward or toggle
step) if the result of the selection will not violate τ(y′).
Additionally, we typically see convergence speedups during
inference since at each iteration the constraints τ greatly
reduce the set of valid vertex-label pairs.

III. DATASETS

We obtained two datasets from maybe3d.com. The cam-
eras set contains 360 models (298 train, 62 test, 34 part
labels). The video recorders set contains 64 models (50 train,
14 test, 12 part labels). 4 This dataset presents an interesting
challenge due to many part types that are very small and
difficult to detect and distinguish (e.g. buttons, connectors).

IV. EXPERIMENTS

To be evaluated as a true positive, a part detection
must pass a proximity test: (1) it must be within a small
distance of the matching part’s ground truth location (within
neighborhood V () as defined earlier) and (2) it must not be
closer to any other part’s ground truth location. Furthermore,
since we aim for a sparse labeling, at most one detection per
object part can be a true positive (if multiple detections for
the same part pass the proximity test all but the closest will
be evaluated as false positives).
Descriptors and classifiers It is important to know how well
our choice of descriptors and classifiers perform independent
of the structured prediction. This will also provide a reason-
able baseline for evaluating the structured prediction. The
SVM classifier is compared against two reasonable alterna-
tives: (1) a k-NN classifier implemented simply as a majority
vote of the k = 5 neighbors, and (2) JointBoost [24] which
has shown state-of-the-art performance for classifying shape
descriptors [13]. Table I shows that the SVM classifiers are a
reasonable choice for cy . To better understand the contribu-
tion of the descriptors, we observe the relative performance

5-NN JointBoost [24] SVM
MAP 0.36 0.39 0.42

Table I
MEAN PER-LABEL AP FOR CLASSIFIERS ON THE CAMERAS.

Figure 4. Relative performance of classifier when omitting one
feature type. Left: cameras, right: video recorders.

of the classifiers when using a subset of the full feature
ensemble. Fig. 4 shows the relative performance when one
feature type is omitted from the ensemble. Interestingly,
leaving out the appearance descriptor hurts the most for the
cameras set, but the contribution is more uniform across
feature types for video recorders.
Inference. We denote I1 as the greedy forward search
inference algorithm of [5], and I2 our proposed generalized
greedy inference (algorithm 1). Table II shows the mean
inference score over camera test models for both algorithms
compared to LBP. We see that I2 generates scores closer to
LBP than I1, and for the cameras set I1 had improved the
score over I2 for a full 25% of the models.
Structured prediction. Let SVMI1 refer to the structured
prediction algorithm using inference I1 (no multiplicity con-
straints), SVM c

I1
for the same algorithm with multiplicity

constraints, and SVM c
I2

for our proposed inference I2 with
multiplicity constraints. Table III shows the mean per-label
AP performance for both datasets. Performance improves
significantly when adding any structured prediction layer to
the base SVM classifiers. As expected from table II we see
small but consistent improvement when choosing I2 over I1,
and similarly the multiplicity constraints have a consistently
positive impact.

The high mean per-label AP scores in table III are a
misleading indicator of the difficulty of this dataset. This is
in part due to a number of labels which appear relatively
infrequently in the test set but have high performance.
Another perspective is obtained by measuring AP over all
detections. In order to compare detections across labels, we
update our scoring to use an approximation of the marginal

I1 [5] I2 LBP [18]
mean score 3.99 4.29 4.32

Table II
AVERAGE INFERENCE SCORES FOR DIFFERENT TECHNIQUES.

maybe3d.com

SVM SVMI1 SVMc
I1 SVMc

I2

cameras 0.42 0.55 0.61 0.67
video recorders 0.73 0.81 0.86 0.88

Table III
MEAN PER-LABEL AP PERFORMANCE.

SVMI1 SVMc
I1 SVMc

I2

cameras 0.46 0.55 0.57
video recorders 0.52 0.61 0.63

Table IV
MEAN PER-3D MODEL AP PERFORMANCE.

posterior probabilities (see [5] for details). Note this scoring
is only used for performance evaluation as it is not required
for our algorithm to detect parts. Table IV shows the mean
AP per 3D object (after scores have been merged across
classes). Although the performance trends here are similar
to table III, the absolute performance is significantly lower.
Going one step further, fig. 5 shows the PR curves over
all detections in the test set. The performance trends are
generally the same as earlier with the exception that the
multiplicity constraints hinder performance at the higher-
recall segment of the curves. More importantly, these PR
curves accurately highlight the challenging nature of the
sparse labeling problem. Typical detection results for both
datasets are visualized in fig. 6. The zoomed portions of the
images show examples where a spatial layout model can
resolve many detections and false positives correctly.
Test-vs-train dissimilarity. To better understand the limits
of our method, we propose an extreme test that increases
the variation between the training and test sets. Although
the low performance of the k-NN classifier (see table I)
indicates there is already quite a bit of variation, we go

Figure 5. Precision-recall curves for the cameras set.

SVM SVMI1 SVMc
I1 SVMc

I2

cameras (brand) 0.17 0.20 0.21 0.22
cameras (resolution) 0.35 0.42 0.45 0.47

Table V
MEAN PER-LABEL AP FOR DIFFERENT TEST SCENARIOS.

SVM SVMc
I2 CRF [13]

per-label AP 0.51 0.54 -
segment match rate 0.66 0.73 86.3

Table VI
FIRST ROW: MEAN PERFORMANCE OVER ALL 8 CATEGORIES.

SECOND ROW: LABELING ACCURACY RATE MEASURED BY
INTERSECTION WITH PART SEGMENTATION.

further by creating mutually exclusive partitions based on
camera brand (e.g. for brand Nikon, train on all non-Nikon
models and test only on Nikon models). The average results
over 8 camera brand names are shown in the top row of
table V. Although the overall performance drops expectedly
when emphasizing the difference between train and test sets,
there are still elements of the spatial configuration that can
be exploited as we still see sizeable improvements when
applying the spatial layout models. 4

Mesh resolution variability. Table V (second row) evaluates
sensitivity to mesh resolution. In this experiment we create
a spatially non-uniform mesh alteration by subdividing each
mesh triangle in the training set into three smaller ones with
probability p = 0.35. To increase the challenge we subdivide
triangles in the test set at a different rate (p = 0.15). Despite
these alterations, the performance trends remain consistent
(compare with table III). However, the relative changes
indicate the feature descriptors are more robust to resolution
than the spatial layout model. 4

Densely labeled models. While our approach is designed for
realistic textured objects, we perform additional experiments
with data where dense part segmentations are available for
evaluation. A portion of the Princeton shape dataset [21]
(PSB) has been densely labeled by [2]. We choose 8 cat-
egories which each contain 20 models (split into 14 train
and 6 test). To simulate a sparse labeling we select the
vertex at the center of each part segment (this is driven by
the observation in [3] that “segment centeredness” is key
factor when humans are tasked with selecting points on a 3D
surface). Results averaged over all 8 categories are shown in
the top row of table VI. The challenges here are (1) limited
training data (this reinforces our motivation for working with
sparse annotations which are easy to collect at scale), and
(2) articulated shapes. In such a setting, accurately learning
the spatial layout model is difficult and the results confirm
this as there is only a small gain from our model. Fig. 6
shows detections from two of the articulated categories, Ant
and Armadillo. After applying the spatial layout inference
SVM c

I2
there are still multiple hand detections on the

Armadillo hand (top row). This is a failure case where
the spatial layout model may not have learned the relative
distance weights for hand parts accurately.

Additionally, we evaluate how frequently our detections
land in the correct segment (bottom row of table VI). Even
if detections are not localized precisely they are frequently

capturing the correct segment on the model. We implement
the CRF model of [13] which has shown state of the art
results on this dataset, and the labeling recognition rate (i.e.
per-triangle label accuracy) is reported in the bottom row
of table VI. Although it is an apples-to-oranges comparison
with our accuracy, this does give idea of the gap between
learning from sparsely vs densely labeled models. 4

V. CONCLUSION

This work presents a novel approach for a part-based
understanding of 3D objects that exploits the spatial layout
of parts. It is scalable for real-world applications since it re-
quires only sparsely labeled models for training. Experimen-
tals show that a spatial configuration model can dramatically
improve detection results when the individual parts may
not be easily distinguishable independently. Moreover, this
performance gain is still observable under extreme scenarios
(minimal similarity between the test and train sets and mesh
resolution variation). From the experiments on data where
dense labeling is available, we see the two biggest limitations
of our work are learning from limited data and modeling
articulated shapes. It is promising to see that learning from
sparse labels produces an understanding of object parts that
is not far from what can be achieved with full segmentations.
A future direction of this work will be to investigate how
spatial layout can be utilized to address other challenges in
3D model analysis, such as fine-grained categorization.

REFERENCES

[1] S. Belongie, J. Malik, and J. Puzicha. Shape matching and
object recognition using shape contexts. Pattern Anal. Mach.
Intell., 24(4):509–522, Apr. 2002. 3

[2] X. Chen, A. Golovinskiy, and T. Funkhouser. A benchmark
for 3D mesh segmentation. ACM Transactions on Graphics
(Proc. SIGGRAPH), 28(3), Aug. 2009. 6

[3] X. Chen, A. Saparov, B. Pang, and T. Funkhouser. Schelling
points on 3d surface meshes. ACM Transactions on Graphics
(TOG), 31(4):29, 2012. 2, 6

[4] C. Cortes and V. Vapnik. Support-vector networks. Machine
learning, 20(3):273–297, 1995. 3

[5] C. Desai, D. Ramanan, and C. C. Fowlkes. Discriminative
models for multi-class object layout. International journal of
computer vision, 95(1):1–12, 2011. 1, 2, 3, 5, 6

[6] P. Felzenszwalb, D. McAllester, and D. Ramanan. A dis-
criminatively trained, multiscale, deformable part model. In
Computer Vision and Pattern Recognition, 2008. CVPR 2008.
IEEE Conference on, pages 1–8. IEEE, 2008. 2

[7] P. F. Felzenszwalb and D. P. Huttenlocher. Pictorial structures
for object recognition. International Journal of Computer
Vision, 61(1):55–79, 2005. 2

[8] A. Golovinskiy and T. Funkhouser. Consistent segmentation
of 3d models. Computers & Graphics, 33(3):262–269, 2009.
1

[9] X. He, R. S. Zemel, and M. A. Carreira-Perpiñán. Multiscale
conditional random fields for image labeling. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 695–703, 2004. 2

[10] Q. Huang, V. Koltun, and L. Guibas. Joint shape segmentation
with linear programming. In ACM Transactions on Graphics,
volume 30, page 125, 2011. 1

[11] T. Joachims, T. Finley, and C.-N. Yu. Cutting-plane training
of structural svms. Machine Learning, 77(1):27–59, 2009. 4

[12] A. Johnson. Spin-Images: A Representation for 3-D Surface
Matching. PhD thesis, Robotics Institute, Carnegie Mellon
University, Pittsburgh, PA, August 1997. 3

[13] E. Kalogerakis, A. Hertzmann, and K. Singh. Learning 3D
Mesh Segmentation and Labeling. ACM Transactions on
Graphics, 29(3), 2010. 1, 2, 3, 5, 6, 7

[14] P. Kohli, L. Ladický, and P. H. Torr. Robust higher order
potentials for enforcing label consistency. Int. J. Comput.
Vision, 82(3):302–324, May 2009. 2

[15] V. Kolmogorov. Convergent tree-reweighted message passing
for energy minimization. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 28(10):1568–1583, 2006.
3

[16] J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Condi-
tional random fields: Probabilistic models for segmenting and
labeling sequence data. In Proceedings of the ICML, pages
282–289, 2001. 2

[17] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. Int. J. Comput. Vision, 60(2):91–110, Nov. 2004.
3

[18] Meltzer. http://www.cs.huji.ac.il/ talyam/inference.html. 5
[19] R. Ohbuchi, K. Osada, T. Furuya, and T. Banno. Salient local

visual features for shape-based 3d model retrieval. In In SMI,
2008. 2

[20] A. Shamir. A survey on mesh segmentation techniques.
In Computer graphics forum, volume 27, pages 1539–1556.
Wiley Online Library, 2008. 1

[21] P. Shilane, P. Min, M. Kazhdan, and T. Funkhouser. The
Princeton shape benchmark. In Shape Modeling International,
2004. 6

[22] O. Sidi, O. van Kaick, Y. Kleiman, H. Zhang, and D. Cohen-
Or. Unsupervised co-segmentation of a set of shapes via
descriptor-space spectral clustering. In ACM Transactions on
Graphics (TOG), volume 30, page 126. ACM, 2011. 1

[23] B. Taskar, C. Guestrin, and D. Koller. Max-margin markov
networks. In Advances in Neural Information Processing
Systems. MIT Press, Cambridge, MA, 2004. 2

[24] A. Torralba, K. P. Murphy, and W. T. Freeman. Sharing visual
features for multiclass and multiview object detection. Pattern
Analysis and Machine Intelligence, IEEE Transactions on,
29(5):854–869, 2007. 5

[25] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun.
Large margin methods for structured and interdependent
output variables. J. Mach. Learn. Res., 6:1453–1484, Dec.
2005. 2, 4

[26] O. Van Kaick, A. Tagliasacchi, O. Sidi, H. Zhang, D. Cohen-
Or, L. Wolf, and G. Hamarneh. Prior knowledge for part
correspondence. In Computer Graphics Forum, volume 30,
pages 553–562. Wiley Online Library, 2011. 1, 2

[27] Y. Weiss and W. T. Freeman. Correctness of belief prop-
agation in gaussian graphical models of arbitrary topology.
Neural computation, 13(10):2173–2200, 2001. 3

[28] C. Wu, B. Clipp, X. Li, J.-M. Frahm, and M. Pollefeys.
3d model matching with viewpoint-invariant patches (vip).
2012 IEEE Conference on Computer Vision and Pattern
Recognition, 2008. 3

[29] Y. Zhang and T. Chen. Efficient inference for fully-connected
crfs with stationarity. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, pages 582–589,
Washington, DC, USA, 2012. IEEE Computer Society. 2

[30] M. Z. Zia, M. Stark, B. Schiele, and K. Schindler. Detailed 3d
representations for object recognition and modeling. Pattern
Analysis and Machine Intelligence, IEEE Transactions on,
35(11):2608–2623, 2013. 2

Figure 6. Ground truth sparse labels and detection results of the SVM baseline and our spatial layout models. Top: cameras set. Bottom
left: video recorders set. Bottom right: examples from two of the articulated categories in the PSB set (Armadillo on top, Ant on bottom).
For more clarity please zoom and view in color.

