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1. Supplementary material

This document contains some details of our approach
helpful for reproducing our method and results.

2. Implementation Details for Descriptors

2.1. Geometry Descriptors

Curvature. We compute principal surface curvatures k1
and k2 in the one ring neighborhood of a point[3]. Fol-
lowing [6] we construct a feature vector in R9 with the fol-
lowing values: k1, |k1|, k2, |k2|, k1 ∗ k2, |k1 ∗ k2|, k1+k22 ,
|k1+k2|

2 , k1 − k2.
Spin Image. The spin image is computed by parame-

terizing the local surface geometry around a point into the
radial distance to the point’s surface normal, and the signed
distance to the point’s tangent plane [5]. We compute a 6×6
histogram descriptor in this parameter space, with points
weighted by their Voronoi area.

Shape Context. Originally used for shape matching in
images [2], this descriptor computes a 2D histogram in rela-
tive log-geodesic distance and relative orientation of model
points relative to the reference point. We use a 5 × 6 his-
togram with points weighted by their Voronoi area.

Neighborhood-PCA. Following [6] we compute the sin-
gular values σ1, σ2, σ3, of the covariance matrix of local
points at various geodesic radii (5%, 10% and 25%). A 36
dimensional feature descriptor is then constructed from the
following, computed in all 3 scales: σ1
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where σ = σ1 + σ2 + σ3.
Average Geodesic Distance [4]. This descriptor indi-

cates how isolated a point is from the rest of the model.
In practice geodesic distances cannot always be computed
(e.g. noisy models made up of multiple disconnected com-
ponents). In such cases we follow [8] and introduce con-
nections between components through contacts, followed
by loosely adding edges between their closest points.

2.2. Appearance Descriptors

We incorporate the appearance cues implicit in the tex-
ture of the 3D models by processing the original texture im-
age I.

LAB Color. We convert the pixel colors into the percep-
tually uniform L*a*b* color space in order to use as features
in Superpixelization (Section 3.3 in the paper).

Textons. We adopt the 17 filter bank and texton cluster-
ing of [7]. Specifically, we convolve the texture images of
all models in the shape set with a bank of filters of size 5×5
which is composed of Gaussians with 3 different scales (1,
2, 4) applied to L*a*b* channels, Laplacian of Gaussians
with 4 different scales (1, 2, 4, 8), and the derivatives of
Gaussians with two different scales(2, 4) for each image
axis. We then cluster all pixels of all texture images to gen-
erate texton descriptors (Figure 1(b) in the paper). Finally,
we construct a texton histogram for each superpixel, from
its pixels.

3. Generating sparse labels for untextured
datasets

For datasets that do not have a sparse labeling input, we
use multiple trials of randomly selected points. The pro-
cess of how these points are selected is detailed below.
If a segment S is made up of N faces that form a sin-
gle connected component S = {fi, i = 1, . . . , N}, and
Sb ⊆ S denotes the boundary faces of the segment. If we let
d(f, S) = minfi∈S dg(f, fi) (where dg denotes geodesic
distance between faces), then the centrality of a face fi ∈ S
is given by d(fi, Sb). To select a face for a segment we can
sample a point from a distribution, where the probability
that a face is selected as the sparse representative is given
by

p(fi) =
d(fi, Sb)

1
α∑

i d(fi, Sb)
1
α

, α ∈ (0, 1] (1)

When α = 1, the probability of selecting face fi as the
segment representative is directly proportional to its dis-
tance to the segment boundary. As α approaches 0 the dis-
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Figure 1. From top to bottom: Chairs, Lamps, Candelabra, Vases. From left to right: Input call-out points, ground truth, our segmentation.

tribution is further skewed so that we give even more pref-
erence to more central points (further from the boundary).
In our experiments we use α = {0.05, 0.25, 0.50, 0.75}.

4. Additional Results

4.1. Untextured data sets

Figure 1 illustrates results from each of the four cate-
gories used in the non-textured mesh segmentation experi-
ments. The sparse labels are generated with α = 0.05 using
Equation 1.

5. Algorithm for 3D Superpixelization

The pseudo-code for superpixelization algorithm is
given in Algorithm 1.

6. Foreground Segment Label Dictionaries of
the Cameras and Video Recorders

Below, we list the part labels that are present in the cam-
eras and video recorders datasets we used in the paper.

6.1. Cameras

Shutter Button , On/Off button , Zoom Button , Speaker ,
AF Assist Beam , Flash , Microphone , Battery Cover , Tri-
pod Receptacle , LCD Screen , Mode Switch , Mode Dial ,
Exposure Compensation Button , Set Button , Display But-
ton , Macro Button , Flash Button , Indicator , Playback
Button , Menu Button , Terminal Cover , Strap Mount , Lens
, Infrared Port , ISO Button , White Balance Button , Lens
Release Button , Lens Mount , USB Port , Lens Contacts
, Control Dial , Zoom Ring , Information Button , Delete
Button , DC Coupler , View Finder , Hot Shoe.

6.2. Video Recorders

Microphone , Display , Lens , Speaker , HDMI Connec-
tor , USB Connector , Start/Stop Button , Status Indicator ,
Prev Button , Next Button , Lock Switch , Mic Terminal ,
Photo Button , On/Off button , Tripod Receptacle , Termi-
nal Cover , Display Button , Playback Button , Play/Pause
Button , BGM button , Auto Button , Memory Slot , A/V
Out , Menu Button , Joystick , Lens Cover Release , Strap
Mount , Access Lamp , DC Connector , Built-in Flash , A/V
Out , Microphone jack.



Algorithm 1 3D Superpixelization
1: Detect active pixels in the texture as the pixels that are

used in the appearance of the mesh (See Figure 2 in the
paper for an example illustration).

2: for all Active pixels in the texture do
3: Compute L∗a∗b∗ color: [lk, ak, bk].
4: Compute 3D world position by projecting the pixel

onto the triangle it appears on the mesh using the tex-
ture coordinates: [xk, yk, zk].

5: Compute 3D world normal by projecting the pixel
onto the triangle it appears on the mesh using the tex-
ture coordinates: [nk, nk, nk].

6: Assemble feature vector using color, image co-
ordinates, 3D world coordinates, and normals:
[lk, ak, bk, x

I
k, y

I
k, xk, yk, zk, nk, nk, nk].

7: end for
8: Initialize cluster centers by sampling pixels at a regu-

lar grid step S for all pixels including inactive pixels:
Ck = [lk, ak, bk, x

I
k, y

I
k, xk, yk, zk, nk, nk, nk].

9: Perturb cluster centers in an n×n neighborhood, to the
lowest gradient position (n� S).

10: repeat
11: for all Cluster centers do
12: Assign best matching active pixels from a 2S×2S

square neighborhood around the cluster center ac-
cording to the distance measure (smallest distance
with Equation 1 in the paper).

13: end for
14: Compute residual error E (L1 distance between pre-

vious centers and recomputed centers).
15: until E ≤ threshold
16: Enforce connectivity (See [1] for details).
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