
Surface Creation on Unstructured Point Sets Using Neural Networks

Mehmet Ersin Yumer, Levent Burak Kara

Visual Design and Engineering Laboratory
Carnegie Mellon University

Email: {meyumer, lkara}@cmu.edu

Abstract

We present a new point set surfacing method based on a data-driven mapping between the parametric and geometric spaces. Our
approach takes as input an unstructured and possibly noisy point set representing a two-manifold in R3. To facilitate parametriza-
tion, the set is first embedded in R2 using neighborhood preserving locally linear embedding. A learning algorithm is then trained
to learn a mapping between the embedded 2D coordinates and the corresponding 3D space coordinates. The trained learner is then
used to generate a tessellation spanning the parametric space, thereby producing a surface in the geometric space. This approach
enables the surfacing of noisy and non-uniformly distributed point sets. We discuss the advantages of the proposed method in
relation to existing methods, and show its utility on a number of test models, as well as its applications to modeling in virtual reality
environments.

1. Introduction

In this paper, we present a new surface design method that
can take as input 3D point sets, and can generate freeform open
surfaces through a neural network based regression algorithm.
In this work, point sets of interest can be sparse, unstructured,
and unevenly distributed, and devoid of normal vector infor-
mation. Such point sets frequently arise with the use of new
generation input devices such as 3D optical or magnetic track-
ers in VR environments (Fig. 1) where the points are sampled
from trackers attached to the users’ hands or any part of their
bodies. Such point sets are considerably different in nature than
the widely studied class of range data, where dense point sets
are sampled directly from the surface they represent. In surface
design from point tracking, however, one rarely obtains a full
and dense coverage of the intended surface. Moreover, point
sampling may exhibit significant non-uniformity based on the
users’ motion speed and their focus on particular regions of the
design. The long term goal of the proposed work is thus to
provide industrial surface design algorithms that can operate
on tracking data to produce surfaces with controllable aesthetic
qualities and associated mechanisms enabling further detailed
refinement on the initial data.

As one step toward this goal, we present a neural net-
work based surface regression method that takes as input open
or closed point sets in R3, and generates free form surfaces
through a parametric embedding and tessellation in R2. The
parametric embedding is achieved through a local neighbor-
hood preserving method. Once a parametrization of the input
point set is computed, a mapping between the parametric co-
ordinates of input points in R2 and their corresponding 3D de-
sign space coordinates is trained on a multi-layer, feed-forward,
back-propagation neural network. A tessellation created in the
parametric domain is then fed to the trained network which re-

sults in the synthesis of a two-manifold surface in the design
space. A key advance in the proposed work is that the surface
complexity is dictated by the network topology that iteratively
minimizes the under-fit and over-fit to the available data. We
focus on the creation of surface patches that capture the un-
derlying geometry intended by the designer in such cases, yet
without compromising from surface quality. This approach is
in contrast to methods that require the designer to study the un-
derlying point set to decide the degree or functional form of
the fitted surfaces. We demonstrate that the proposed approach
can be used for creating free-form surfaces from arbitrary point
sets, as well as from point sets arising from tracking data. We
also present a surface stitching method to enable the creation
of water-tight and possibly non-manifold shapes in the VR en-
vironment, where our patch based surface creation technique
is utilized. We also demonstrate our method’s applicability to
hole filling on polygonal surfaces. Specifically, our contribution
lies in a flexible neural network based surface creation method
from unorganized point sets. This approach utilizes a non-linear
parametric embedding [1], that enables our algorithm to learn a
generative mapping from the parametric to the geometric space.
Moreover, the proposed stitching algorithm enables the differ-
ent surfaces created using our approach to be unified into water
tight models.

2. Related Work

In this section we review the previous work in surface cre-
ation, fitting, and approximation of point sets based on the sur-
face representations used; parametric, mesh based and implicit,
followed by a review of the use of neural networks in this field.

Parametric Surfaces: Parametric surfaces are one of the most
widely used representations as they enable compact description,

Preprint submitted to Journal of Computer Aided Design December 20, 2011

a b c d

Figure 1: Applications of our surfacing method. (a-b) Patch based point set surface regression. (c-d) Hole filling.

and straightforward tessellation with arbitrary resolutions. Gre-
gorski et al. [2] introduced a B-spline surface reconstruction
method for point sets. Their approach utilizes a quad-tree like
data structure to decompose the point set into multiple smaller
point sets. Least squares quadratic fitting of each sub-point
set is then followed by the degree elevation to B-spline sur-
faces and blending. Bae et al. [3], focusing primarily on laser
range scanned data, introduced orthogonal coordinate transfor-
mations for NURBS surface fitting. The point set is first trans-
formed into an orthogonal coordinate system, followed by B-
spline fitting which is finally converted to NURBS surfaces.
Adaptive fitting techniques introduced by Pottmann et al. [4, 5]
utilize an active contour model which gradually approximates
the targeted model shape. This iterative approximation mini-
mizes a quadratic functional composed of an internal surface
energy for smoothness and an approximation error for fitting.
Lin et al. [6] introduce an iterative NURBS curve and surface
fitting methodology to a given point set which is able to inter-
polate the point set. The major restriction of their approach
is that the point set has to be pre-ordered. Following a sim-
ilar approach, boundary condition satisfying NURBS surface
fitting is also achieved [7]. The neural network in our method is
similar to parametric surface definitions in the sense that it en-
ables arbitrary resolution tessellation straightforwardly and has
a compact definition. However, the proposed method differs
from parametric fitting in that the functional form of the sur-
face is dictated by the optimized network topology rather than
requiring the user to decide the parameters of the fit. As shown
in the following examples, the proposed method can be readily
modified to fit a prescribed functional form such as a parametric
surface of a given order, when desired.

Mesh-based Surfaces: Mesh-based or polygonal surfaces en-
able a straightforward encoding and rendition of surfaces. In
particular, they have been used extensively for surfacing point
sets arising from range scanners. In an early work, Hoppe
et al. [8] used local linear approximations of the point set to
create a mesh-based surface that approximates the point set.
The first provably correct mesh-based surface fitting algorithm
is presented by Amenta et al. [9, 10]. Given a sufficiently dense
point sampling from the original surface, the approach guar-
antees the resulting surface to be topologically correct while
interpolating the input samples. Gopi et al. [11] introduced a
sampling criteria such that the fitted surface is guaranteed to
be topologically correct and also provided algorithms that cre-

ate mesh-based representations of such point sets [12]. Based
on Delaunay tetrahedralization of a given point set, Attene
et al. [13] introduced a method for closed genus-n triangulation
fitting provided that the points are sampled from a real object.
In 2005, Kuo et al. [14] approached the surface fitting problem
with a region growing algorithm that gradually adds new trian-
gles to an initial triangulation starting from a seed region of the
point set. Dey et al. [15] presented a mesh-based surface fit-
ting method applicable to noisy point sets as long as the noise
level is within a specified threshold. Many mesh-based surface
fitting algorithms typically require a smoothness or fairness cri-
terion to be minimized, which may require considerable post
processing after the initial surface fit [16].

Implicit Surfaces: Implicit representations enable compact
mathematical descriptions and rapid set operations. However,
the tessellation and rendering of such representations is a sig-
nificant obstacle requiring specialized algorithms for visualiza-
tion. Juttler et al. [17] introduced an approach which results
in implicit least squares reconstruction of spline surfaces tai-
lored toward reverse engineering. A widely used family of im-
plicit surfaces are the radial basis functions (RBF). Kojekine
et al. [18] used an octree structure to reduce the computa-
tional time associated with RBF spline based volume recon-
struction. Ohtake et al. [19] used implicit surfaces as a way to
facilitate intersection checks on mesh-based geometries. They
also employed a similar approach together with compactly sup-
ported RBFs for range scanner point cloud surface fitting. Wu
et al. [20] introduced a combined approach where they use mul-
tiple RBFs, where individual RBFs construct seed regions that
are coalesced into larger regions through a partition of unity
functional. A key drawback of the implicit approaches is the
need for specialized visualization mechanisms. Nonetheless,
the proposed approach is conceptually similar to RBFs in the
way it takes a purely data-driven approach to surface genera-
tion. The main advantage of the proposed work is in its ability
to generate an arbitrary tessellation directly within the paramet-
ric space. This allows an explicit control of the mesh topology
and density, and lends itself to a straightforward geometry cre-
ation and visualization in the form of a polygonal model.

Use of Neural Networks: Barhak et al. [21] utilized neu-
ral network self organizing maps for 2D grid parametrization
and surface reconstruction from 3D points sets. The result
of the neural network is used to create a 3D surface itera-
tively with the help of a gradient descent algorithm. Similarly,

2

{u, v}

3D Surface Fit in R3

Raw 3D Points in R3

Embedded Points in R2

Locally Linear
Embedding

or

Tessellation Vertices in R2

Training

Learner

{x, y, z}
x

y
z

x

y
z

v

u

Synthesis

Tessellation Grid
Generation

v

u

v

u

Figure 2: Neural network surface regression of unstructured point sets. First, a neighborhood preserving embedding is used for parametrization followed by neural
network training. Then the final surface is synthesized by the trained network.

Galvez et al. [22] and He et al. [23] utilized neural networks
for parametrization and point ordering, rather then surface cre-
ation. Khan et al. [24] introduced an approach for construct-
ing surfaces from boundary curves that are required to be pla-
nar. Their approach addresses the boundary-to-surface learn-
ing problem rather than the point-to-surface learning problem.
Krause et al. [25] implemented a neural gas neural network
[26] for approximating a point set with disconnected triangles.
These triangles do not necessarily span the whole surface and
additional post-processing is required to ensure connectivity
and water-tightness of the final surface. The method presented
in this paper differs from their approach in that the network
output in our work is the structured and a topologically valid
manifold. Additionally, rather than deforming the initial trian-
gles to a given point set similar to mesh-based approaches, the
network presented in this paper serves as a direct tessellation
engine from which a surface can be generated with an arbi-
trary resolution. Other related work [21, 22, 23, 24] introduced
above do not utilize neural networks for direct surface creation
from arbitrary point sets as we do, but rather use the network
for point ordering or for surfacing planar boundary curves.

3. Overview

In this paper, we present a data-driven, learning based sur-
face creation method for unstructured point sets. Unstructured
point sets of interest may be sparse, unevenly distributed, and
noisy. Our approach consists of four main steps; embedding of

the point set in R2, training of the learner, creation of the tes-
sellation, and generation of the surface in 3D (Figure 2). Em-
bedding involves the creation of a unique 2D parametrization
of the given point set. Training is a learning of the one-to-one
mapping between the parametric coordinates and the 3D coor-
dinates. A tessellation is then created in the parametric space
that spans the embedded points. After the mapping is learned,
it is used for synthesis in which a fully connected two-manifold
surface is created in 3D from the tessellation in the parametric
space.

4. Parametrization

Our parametrization approach is invariant to translations and
rotations, and can be used for surfaces that fold onto themselves
without creating self-intersections. This capability is achieved
using a local neighborhood preserving nonlinear transformation
from the 3D space to the 2D parametric space. The resulting
global nonlinear transformation is the outcome of locally linear
transformations. Therefore, the embedding of the 3D coordi-
nates into the 2D parametric space boils down to the solution
to a sparse linear system as shown by Roweis et al. [1]. In the
following paragraphs, we explain the parametrization tailored
to our purposes; for unstructured point set parametrization, and
for incomplete mesh parametrization.

3

x

y

z

u

v

ith Point k-Neighbors Other Points

Wij

Wij

iD

jD

iP

jP

Figure 3: Locally linear embedding for unstructured point set parametrization.

4.1. Unstructured Point Set Parametrization

For parameterizing unstructured point sets, the algorithm re-
lies on the local neighborhood information. Specifically, the
following procedure makes an implicit assumption; every point
in the point set can be reconstructed by a linear combination of
its nearest neighbors.

1. A neighborhood Ni for a fixed number of neighbors is
calculated for every ~Di in R3 based on the Euclidian dis-
tances. ~Di represents the position vector of point i (Fig. 3).

2. A sparse neighborhood weight matrix W is computed by
minimizing Eqn. 1, subject to two constraints; rows of (W)
sum to 1, and Wi j corresponding to ~D j that is not in Ni is
equal to zero.

θ(W) =
∑

i

|~Di −
∑

j

Wi j ~D j|
2. (1)

3. Using W calculated in step 2, minimizing Eqn. 2 results
in the 2D parametric embedding ~Pi of the point ~Di for all
points in the original 3D space.

φ(W) =
∑

i

|~Pi −
∑

j

Wi j~P j|
2. (2)

The above described, sequential minimization of two differ-
ent cost functions is reduced to a single eigenanalysis compu-
tation as described in the following paragraphs.

4.2. Incomplete Mesh Parametrization

We utilize incomplete mesh parametrization for constructing
hole-filling learners that can fill in the missing parts of a given
mesh by using the mesh vertices that surrounds the correspond-
ing gap. Although the surrounding points can be simply cast
as an unstructured point set, our approach enables the exist-
ing edge information to construct the desired manifold that the
mesh contains. To this end, instead of using a fixed number
of nearest neighbors, we use the one ring neighbors for every
vertex while forming the weight matrix, W, in Eqn. 1.

x

y

z

u

v

ith vertex One-ring neighbors Other vertices

Wij

Wij

iD

iP

jP
jD

Figure 4: Locally linear embedding for mesh parametrization.

4.3. Deterministic Solution of the Embedding Problem
The minimization of Eqn. 2 with fixed weights results in the

2D embedding, ~Pi. This optimization has to be constrained in
order to attain a unique solution. First constraint involves pre-
venting rigid body translations by anchoring the centroid of the
point set at the origin:∑

i

~Pi = ~0. (3)

Also, to avoid degenerate solutions [27], the embedding vectors
are constrained to have unit covariance:

1
n

∑
i

~Pi ⊗ ~Pi = I2, (4)

where ⊗ is the Kronecker product, I2 is the 2×2 identity matrix,
and n is the number of points.

Under these constraints the error function to be minimized in
Eqn. 2 can be rewritten as:

φ(W) =
∑

i j

Mi j(~Pi · ~P j), (5)

where M is a symmetric matrix defined as:

M = (In −W)T (In −W), (6)

where In is the n × n identity matrix. The optimum solution to
Eqn. 5 is found by the two eigenvectors of Eqn. 6 that corre-
spond to the second and third smallest eigenvalues of M [27],
since the first eigenvector is the free-free mode of the matrix M
which has equal values in all degrees of freedom. That is, for
every point, the parameter space coordinates are:

uPi =2 ξi (7)
vPi =3 ξi

where kξ is the kth eigenvector of M.
With this calculation, the two minimization problems associ-

ated with Eqn. 1 and Eqn. 2 is avoided. The calculation of M,
from the weight matrix, W, is straightforward. Note that M is
a sparse matrix as the number of points in the point set is typi-
cally much greater than the number of nearest neighbors prac-
tically. Moreover, we need to calculate only the smallest three

4

a

e

b

f g

c d

h

O
R

IG
IN

A
L

EM
B

ED
D

IN
G

x
y

z

u

v

Figure 5: Parametrization of an open surface with uniformly sampled random points. Open cylinder data points (a-d) and corresponding parametrization (e-h) for
1400, 700, 350, 70 points respectively.

eigenvectors of M need to be calculated, which requires mini-
mal computational effort. Azariadis et al. [28] also introduces a
parametrization suitable for patch by patch surface fitting. Their
method requires an iterative fitting of the dynamic parametriza-
tion, whereas we accomplish the parametrization with a one-
step eigenanalysis as described. Moreover, our parametrization
does not require the pre-determination of the boundary curves
in contrast to [28].

To demonstrate our parametrization scheme, an open cylin-
der is utilized. Note that these types of point sets are not
correctly embedded using global linear techniques such as the
Principal Component Analysis or its variants. Fig. 5 shows the
embedding results on this cylinder. The sampling in the original
space becomes increasingly sparse to the point that the underly-
ing geometry is no longer discernible (Fig. 5d). As shown, the
parametric embedding faithfully captures the intended geome-
try in the embedded space when the sampling rate is sufficiently
high. This capability diminishes with increasing sparsity. How-
ever, with increasing sparsity, the underlying surface concur-
rently becomes less discernible to the human eye as well. One
downside of this approach, however, is that if the point set rep-
resents a surface that intersects itself, this approach will fail to
compute a correct parametrization of the surface. To overcome
this challenge, segmentation approaches might be utilized [29].

5. Learning Based Surface Regression

In this section, we present our learning based surface regres-
sion method for surface creation from point sets, and hole-
filling for incomplete meshes. A learner in our framework
(Fig. 2), represents a function that can continuously map an R2

space to an R3 space. This learner can then be trained using
the one-to-one relationship between the parametric coordinates
and the 3D coordinates of the original point set. We utilize feed-
forward multi layer neural networks as learners in our approach
for a number of desired properties they entail:

1. The topology of a neural network, thus the degrees of free-
dom it imposes on the created surface, is not fixed as op-

Pu

Pv

DX

DY

DZ

1
1

wji wkj

wj0
wk0

Figure 6: The multi-layer feed-forward network.

posed to a pre-defined functional form such as a polyno-
mial function.

2. Trained neural networks are good interpolaters [30], which
is a desired property since the tessellation in the embed-
ded space corresponds to vertices to be generated from the
parametrizations of the point set. In this context, interpola-
tion refers to the regression function within the inner range
of the data points.

3. The functional form of each neuron in a given neural net-
work can be defined to tailor desired properties (such as
continuity and differentiability) in the resulting surface.

Neural networks can be viewed as functions that map an in-
put space to an output space (Fig. 6). This general idea can be
exploited in a number of ways. For instance, if we use a sin-
gle layer-single neuron in the neural network topology given in
Fig. 6, with a linear activation function, a mapping from the
embedded space to the 3D space will result in a planar surface
(Fig. 7). Similarly, the network can be designed to regress any
input space to any output space using a prescribed polynomial
or parametric form. However, we focus on the general form of
feed forward neural networks with adaptive topology as shown
in Fig. 6 with nonlinear activation functions. The topology of
the network has a significant impact on the final surface created,

5

Point Set Ground Truth Surface Activation: logarithmic sigmoid Activation: tangent sigmoid Activation: radial basis

NMSE: 0% NMSE: 0% NMSE: 4%

Activation: exponential Activation: cubic Activation: sinusoidal Activation: triangular basis Activation: linear

NMSE: 6% NMSE: 8% NMSE: 10% NMSE: 9% NMSE: 20%

Figure 7: Activation functions, and their effect on the resulting surface. NMSE is the normalized mean square error with respect to the bounding box diagonal of
the point set.

since it implicitly dictates the degrees of freedom of the surface.
Our training scheme adaptively selects the desired topology.

5.1. The Learning Problem

The general form of the feed forward neural network learner
we utilize is shown in Fig. 6. Here, ~P is the 2D parametric coor-
dinate of the 3D input point ~D as computed using the techniques
described in the previous section. Hence, the surface construct-
ing problem boils down to a learning problem from R2 to R3.

The functional form of a network with a single hidden layer
with n neurons, that maps ~P to ~D:

{D}k = σ

 n∑
j=1

wk jσ

 2∑
i=1

w ji{P}i + w j0

 + wk0

 (8)

whereσ is the activation function. The activation function plays
an important role in the characteristics of the created surface,
and the fitting error. Since it maps the input of a each neuron to
its output, the propagation of the information in a feed-forward
fashion over these neurons crete the surface in 3D coordinates.

Figure 7 shows the effect of varying activation functions on
the resulting surfaces. In all examples, a two hidden layer neu-
ral network is used, with four neurons in each layer. The fol-
lowing activation functions are used:

Log − S ig : σ(a) =
1

1 + exp(−a)
, (9)

Tan − S ig : σ(a) =
2

1 + exp(−a)
− 1, (10)

Rad − Bas : σ(a) = exp(−a2), (11)

Tri − Bas : σ(a) = 1 − |a|, i f − 1 ≤ n ≤ 1 (12)
0, otherwise.

In Fig. 7, it is seen that the sigmoid activation function results
in the zero mean square error, and captures the ground truth
freeform surface. Moreover, combining Eqn. 9 with Eqn. 8, the
surface can be shown to be infinitely differentiable. Therefore,
a sigmoidal activation function enables the creation of surface
patches that are C∞ continuous.

5.2. Training
In our approach the numbers of inputs and outputs are fixed

at two and three respectively as dictated by the learning prob-
lem. The number of hidden layers and the number of neurons
in each layer, however, can be controlled freely. Increasing the
number of neurons or the number of hidden layers will result
in an increased degrees of freedom and non-linearity in the sur-
face. This may cause an undesirable overfit to the data, if no
other measures are taken [30]. On the contrary, an insufficient
number of neurons and/or layers will produce a stiff map, which
may result in under fitting [30]. Therefore, the number of neu-
rons and layers must be chosen judiciously. To this end, we
employ an iterative procedure for selecting these parameters as
follows:

1. Decompose the available input to training (85%), valida-
tion (10%) and test sets (5%).

6

TRAINING VALIDATION TEST

Figure 8: Example sampling prior to learning.

Figure 9: Tessellation Grid Generation. Regular quad grid generation (top row),
Triangular freeform grid generation (bottom row).

Figure 10: Tessellation of the seat back surface.

2. Initialize a network with a single hidden layer (nL = 1)
and single neuron (nN = 1) in its hidden layers.

3. Train the network until the validation set performance (PV)
converges, with back-propagation [31].

4. Record the test set performance (PT) for the current net-
work configuration.

5. Increase the number of hidden neurons by 1 (nN ← nN +1).
Iterate steps 3-5 until PT converges.

6. Record nN and PT for current nL.
7. If nL < nLmax, increase the number of hidden layers by 1

(nL ← nL + 1). Iterate steps 3-7 until nL = nLmax.
8. Report the network configuration (nL and nN) with the best

performance PT on the test set.

Previous works have shown that an iterative search for the
network architecture prevents over-fitting and under-fitting [30,
32]. In our case, over-fitting will correspond to poor surface
quality with relatively small fitting error, and under-fitting will
correspond to a relatively flat surface with a high fitting error.
Our primary focus is to extract the details of the underlying
true manifold as much as possible, yet without compromising
the surface quality.

For the above training scheme, we need to sample the vali-
dation data set as well as the training data set from the original
input points. To ensure an unbiased coverage of the input space,
we divide the parametric space into a number of subregions and
sample points randomly from a uniform distribution from each
subregion. An example is shown in Fig. 8.

5.3. Tessellation Grid Generation
Once the embedding of the point set is calculated, these

points in 2D are used to generate a tessellation grid (Fig. 9). We
use two different approaches, each serving a different need. For
point sets that span simple regions in the parametric space (not
necessarily in the 3D space), we generate a four sided quadratic
grid represented as a bilinear Coons patch in the parametric co-
ordinates. First, far most points in the four corners of the two
largest PCA directions are determined. Then, points that con-
nect these four anchors are calculated such that the resulting
closed polyline encloses all of the points but the smallest area.
A cubic Beziér curves is fit to each of these point sets. The
curves are then used to generate a quadrilateral tessellation grid
using the bilinear Coons patch governed by Eqn. 13.

Q(u′, v′) = B(u′, 0)(1 − v′) + B(u′, 1)v′ (13)
+ B(v′, 0)(1 − u′) + B(v′, 1)u′

− B(0, 0)(1 − u′)(1 − v′) − B(0, 1)(1 − u′)v′

− B(1, 0)u′(1 − v′) − B(1, 1)u′v′

In Eqn. 13, B’s are the boundary curves of the patch, Q.
The second approach, targeting relatively more complex

outer boundary point sets in the parametric space, generates
a triangulation. First, the outer loop of the point set is deter-
mined, and uniformly resampled. This outer loop is embedded
into a uniform grid, and the grid points outside the loop are dis-
carded. The remaining points are triangulated with Delaunay
triangulation, resulting in the tessellation grid.

7

Figure 11: User Interaction.

a b c

Figure 12: (a) Stitching edges demarcated by the user. (b) Necessary vertex
additions for watertightness. (c) Stitched model.

5.4. Surface Synthesis
The vertices of the generated tessellation grid are then fed to

the trained network, producing the surface in R3, while sharing
the tessellation topology established in the parametric space.
An example surface tessellation is shown in Fig. 10.

6. Implementation

We have deployed the proposed method for surface creation
in a Virtual Reality (VR) design environment for rapid genera-
tion of conceptual shapes, as well as in a sketch based environ-
ment for hole filling.

In the VR environment shown in Fig. 11, the users interact
with the system through a data glove and a magnetic tracker
worn on the sketching hand, and a 3D mouse operated by the
other hand. A 3D stereo vision enabled head set allows the
user to situate themselves in the VR environment. The mag-
netic tracker enables six degrees of freedom absolute motion
tracking of the hand whose 14 joint angles are decoded by the
data glove. Tracking the user’s hand enables the direct dicta-
tion of the point set that, in turn, represents the desired surface
geometry. The resulting point sets are used as the input to our
regression method, which leads to the final freeform surface
geometry. A virtual hand in the VR environment simulates the
sketching hand in real time. The other hand, operating the 3D
mouse, helps the user fly in the VR environment via panning,
rolling and spinning.

In the sketch-based environment, users interactively draw a
region of interest around a hole on a mesh model by lasso ges-
tures, and the hole is filled by generating new vertices and the
associated topology. Once the region of interest is selected and

mapped into the parametric space, the users are able to modify
the new tessellation grid uniformly generated inside the hole, in
order to establish any desired patterns.

6.1. Surface Stitching
To create water tight models, we use a stitching method based

on Laplacian reconstruction [33]. Our formulation is applicable
to arbitrary meshes and non-manifold stitching. For instance
edge shared by three or more surface patches can be stitched
together. An edge in this section (Fig. 12), refers to a connected
open or closed polyline formed by the edges of simplicies on a
meshed surface. A stitching edge does not necessarily lie on the
boundary, i.e. stitching edges at arbitrary locations of the mesh
is possible. For each surface, s, associated with the stitching
operation, the differential coordinates are calculated as follows:

~δs = [L]s~vs, (14)

where ~vs is the vertex position vector and [L]s is the dis-
crete laplacian operator where row i having weights wi j with∑

j wi j = −1, for one-ring neighbors j and wii = 1. Calculating
the weights with the cotangent scheme [33], results in the most
accurate representation of the differential coordinates.

Constraining one vertex, and reconstructing ~vs from the
knowledge of the differential coordinates deltas is a linear prob-
lem of the form, [A]~x = ~b, and will yield the exact vertex po-
sitions ~vs. Since the Laplacian operator is rank deficient (rigid
body translations not constrained), constraining a single vertex
is necessary, and sufficient for a unique solution. Therefore, im-
posing more than one constraints will result in a least-squares
problem. We exploit this nature of Laplacian reconstruction.
Instead of fixing one point for each free surface in the space,
we add as many constraint equations as there are vertex pairs
in the stitching edges and solve the system of equations for all
the surfaces involved in the stitching operation at once. The
constraint equations are in the form of:

~ca − ~cb = 0, (15)

where ~cs are the positions of the vertices lying on the corre-
sponding stitching edge. Necessary vertex additions (Fig. 12)
prior to solution are made to ensure one-to-one correspondence
in the stitching edges.

7. Results

7.1. Comparison with Implicit Function Fitting and Direct Tri-
angulation

Noise-added point sets sampled from an underlying surface,
shown in Fig. 13, are used for a comparison study between our
surface regression method, the radial basis function surface fit-
ting [34], and direct delaunay triangulation [35] of the original
point set.

Radial basis functions can be fit to arbitrary data, ranging
from exact interpolation at the given points to non-interpolating
but smooth fittings for high density point sets [34, 36]. It can
be seen that the low density RBF surface (Fig. 13) has a simi-
lar mean square error as the surface fit created by our method,

8

Per: 0% MSE: 0 MSE: 0.22 MSE: 0 MSE: 0

Time: 4 s. Time: 60 s. Time: 70 s. Time: 0.1 s.

Per.: 1 % MSE: 0.08 MSE: 0.23 MSE: 0.09 MSE: 0

Time: 5 s. Time: 65 s. Time: 80 s. Time: 0.1 s.

Per.: 3 % MSE: 0.09 MSE: 0.26 MSE: 0.11 MSE: 0

Time: 5 s. Time: 75 s. Time: 90 s. Time: 0.1 s.

Per.9 % MSE: 0.15 MSE: 0.27 MSE: 0.39 MSE: 0

Time: 6 s. Time: 95 s. Time: 120 s. Time: 0.1 s.

Perturbed Point Set Neural Network Regression Low Density RBF Regression High Density RBF Regression Direct Delaunay Triangulation

Figure 13: Comparison of surface fitting methods. Each row is the result of reconstruction of the corresponding point set with the given method. Per.: Random
uniform perturbation error percentage in the point set. MSE: Mean square error of reconstruction. Time: Total processing time of each surface in seconds.

a b c

d e f

Figure 14: Automobile side view mirror back surface reconstruction. (a) Actual side view mirror model. (b) Sampled points with 1% uniform error. (c) Neural
network regression. (d) Low density RBF surface fitting. (e) High density RBF surface fitting. (f) Direct delaunay triangulation.

9

Table 1: Network degree of freedom.
SURFACE LAYERS NEURONS

Front of the Back Rest 2 3
Seat Section 2 2

Side of the Seat Section 3 3
Side of the Back Rest 3 3

but the patch created with our method is smoother (Fig. 13).
To decrease the fitting error associated with RBF surface fit,
its function density can be increased [34]. However, when the
density of the RBF surface fitting function is increased, its gen-
eralization diminishes [36, 34] and the surface quality is poorer
as observed in Fig. 13.

Another widely used point set surfacing method is the direct
triangulation of points in the parametric domain [35]. For di-
rect triangulation, we triangulate the point set in the parametric
space created with our open-manifold parametrization method,
and then projected the topology back to 3D space (Fig. 13). As
expected, the mean square error is zero as the triangulation in-
terpolates the original points. However, the surface quality is
significantly compromised.

In Fig. 14, a point set sampled from the back surface of an
automobile side view mirror with 1% uniform error is surfaced
with our method, as well as the above described methods.

7.2. Conceptual Design in Virtual Reality Environment

In this section we demonstrate the capabilities of our surfac-
ing technique using three examples created in a VR environ-
ment. A car seat cushioning design, an abstract shape and an
asymmetric mouse is designed within this environment.

Fig. 15a shows the complete point cloud drawn by the de-
signer representing the multiple surfaces of a car seat. Individ-
ual surfaces are demarcated by different colors, and are sepa-
rated by the user with a keypress during construction. Fig. 15c
shows the four point sets forming the front and left sides of
the back rest and the seat sections of the seat. Fig. 15d is the
corresponding 2D locally linear embedding of these point sets.
Fig. 15e are the resulting constructed surfaces. Table 1 shows
the number of network layers and neurons as computed from
the iterative network topology optimization.

Fig. 15f shows the neural network regression of the front and
back surfaces of the seat. Note that a neural network is trained
and regressed for each individual point set. Table 2 shows
the total network training time for different point sets. In all
cases, once the network is trained, the synthesis is near instan-
taneous. The two main computationally expensive steps in our
approach are the parametric embedding, and the network topol-
ogy optimization/training. Parametric embedding is bounded
by the eigenanalysis involved, which is O(n2) in our implemen-
tation where n is the number of points in the point cloud. Neu-
ral network topology optimization and training is bounded with
O(mn2) where m is the number of topology iterations and n is
the number of points in the point cloud. Since n >> m, the
bound to our algorithm is effectively O(n2).

Table 2: Time for parametric embedding and topology optimization. (On a
Intel-i7 1.6 GHz, 4 GB machine.)

Point Set Parametric Topology Opt.
Size Embedding & Learning
100 0.2 sec. 0.1 sec.

1000 0.8 sec. 0.9 sec.
10000 10 sec. 10 sec.

Since point sets are treated independently, the synthesized
surface patches do not form shared boundaries. Currently, we
stitch these surfaces as explained previously.

Fig. 16 and Fig. 17 exemplifies two product shapes designed
with our system; a mouse and an abstract shape. The mouse is
an asymmetric model with five surfaces defining its ergonomic
shape. The spaceship is an axis-symmetric model with five
symmetric and three mirror surfaces. The sparsity of various
point sets in Fig. 16 - 17(a) are handled by our algorithm and
the regression surfaces are created as shown in Fig. 16 - 17(b).
Final stitched surfaces that result in the water tight geometric
shapes are shown in Fig. 16 - 17(c-d).

7.3. Applications to Hole Filling

In Fig. 18 and Fig. 19, we demonstrate the mesh hole fill-
ing capabilities of our method. Once the user draws the region
of interest around the hole, these vertices are mapped into the
parametric space as described previously by utilizing the con-
nectivity of the mesh. The holes are then filled either with ran-
dom points exhibiting a desired density (Fig. 18), or the user
can impose tailored patterns in on the newly created vertices in
the parametric domain. For instance, in Fig. 19, the user has
sampled points according to the surrounding pattern to create a
triangulation commensurate with the surrounding mesh.

Once the new vertices are generated inside the holes, the hole
boundary and these new vertices are triangulated by Delaunay
triangulation in the parametric domain. A network trained only
on the input-output pairs of the surrounding vertices, is then
used to tessellate the newly created vertices. The additional
topology created in the parametric domain is preserved in the
3D.

8. Discussions and Conclusion

We presented a neural network regression method for
freeform surface creation on point sets. Point sets of interest
are primarily sparse, unstructured, unevenly distributed and can
be partially detailed. Our surface regression procedure is com-
posed of four steps; parametrization, neural network training,
grid generation and synthesis. We also investigate a surface
stitching method to leverage shape design using our surface re-
gression technique.

On Point Set Parametrization. We use locally linear embed-
ding for open two-manifold parametrization. In Fig. 5, it can be
observed that the parametrization is accurate for the point sets
in which the underlying geometry is discernable to the human
eye, whereas the parametrization deteriorates as the sampling

10

a

b

c

d

e

g f

Figure 15: Conceptual design of a car seat. (a) Complete point set created by the user in a virtual reality environment where the position and orientation of the
user’s hand is tracked. (b) Neural network regressed surfaces. (c) Point sets for the front and left sides of the back rest and the seat section. (d) Corresponding
parametrizations. (e) Corresponding regressions. (f) Regressed front and back surfaces. (g) Surfaces after stitching. Point set size vary in 200-500.

11

a b

d c

Figure 16: A mouse designed in the VR environment with our surface regression technique. (a) Point sets. (b) Neural network regression surfaces. (c-d) Finalized
water-tight model. Point set size vary in 300-600.

a b

c d

Figure 17: An abstract shape designed in the VR environment with our surface regression technique. (a) Point sets. (b) Neural network regression surfaces. (c-d)
Finalized water-tight model. Point set size vary in 400-1500.

12

Figure 18: Cortex mesh hole filling with our algorithm.

Figure 19: Fan disk mesh hole filling with our algorithm.

13

rate becomes prohibitively low. Point sets that are unevenly
distributed and/or partially detailed in nature (Fig. 15- 17) are
also successfully parameterized. These parametrizations are in-
dependent of the global position and orientation of the point set
and are also able to process surfaces that fold onto themselves.

On Neural Network Training. Once the point set is parame-
terized, a neural network that takes the parametrization and 3D
space coordinates as input-output pairs is trained for surface re-
gression. This training process is controlled by continuously
monitoring the validation and test sets over different network
structures in order to concurrently minimize both under-fitting
and over-fitting. Under-fitting results in a loss of information in
which the regressed surface will exhibit fewer details compared
to the intended one. Over-fitting, on the other hand, will re-
sult in a network structure that has excess degrees of freedom,
which typically results in undulations in the synthesized sur-
faces. Our approach aims to curtail such phenomena through
an integrated network topology optimization and learning algo-
rithm.

On Grid Generation and Synthesis. The trained network
forms a bridge between the parametrization domain and the 3D
space, thereby effectively serving as a tessellation mechanism.
Through an automatic or guided grid generation process in the
parametric space, a surface tessellation in 3D can be obtained
with a controllable resolution. One such tessellation is shown in
Fig. 10. Tessellated free-form, free-boundary surface patches
can be connected with our stitching mechanism to create water
tight models in our system.

On Surface Stitching. We implemented our surface creation
method in a VR environment where the user is enabled sketch-
ing through hand gestures in 3D. For creating watertight mod-
els, a surface stitching algorithm is developed leveraging a non-
interactive scheme. Our surface stitching method is capable of
connecting an arbitrary number of surfaces into manifold and
non-manifold mesh representations with G0 continuity at the
stitching edges.

Users interacted with our system report highly expected re-
sults from the surface patch creation and surface stitching. We
exploited the interpolation strength intrinsic to neural networks,
and have shown successful hole filling operations using our sur-
face regression method.

References

[1] S. T. Roweis, L. K. Saul, Nonlinear dimensionality reduction by locally
linear embedding., Science (New York, N.Y.) 290 (5500) (2000) 2323–6.

[2] B. Gregorski, B. Hamann, K. Joy, Reconstruction of B-spline surfaces
from scattered data points, in: Proceedings Computer Graphics Interna-
tional 2000, IEEE Comput. Soc, 2000, pp. 163–170.

[3] S. Bae, NURBS surface fitting using orthogonal coordinate transform for
rapid product development, Computer-Aided Design 34 (10) (2002) 683–
690.

[4] H. Pottmann, S. Leopoldseder, M. Hofer, Approximation with active
B-spline curves and surfaces, in: 10th Pacific Conference on Com-
puter Graphics and Applications, 2002. Proceedings., IEEE Comput. Soc,
2002, pp. 8–25.

[5] H. Pottmann, A concept for parametric surface fitting which avoids
the parametrization problem, Computer Aided Geometric Design 20 (6)
(2003) 343–362.

[6] H. Lin, Constructing iterative non-uniform B-spline curve and surface to
fit data points, Science in China Series F 47 (3) (2004) 315.

[7] Z. Yin, Reverse engineering of a NURBS surface from digitized points
subject to boundary conditions, Computers & Graphics 28 (2) (2004)
207–212.

[8] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, W. Stuetzle, Surface
reconstruction from unorganized points, ACM SIGGRAPH Computer
Graphics 26 (2) (1992) 71–78.

[9] N. Amenta, M. Bern, M. Kamvysselis, A new Voronoi-based surface re-
construction algorithm, in: Proceedings of the 25th annual conference on
Computer graphics and interactive techniques, ACM, 1998, pp. 415–421.

[10] N. Amenta, M. Bern, Surface reconstruction by Voronoi filtering, Discrete
and Computational Geometry 22 (4) (1999) 481–504.

[11] M. Gopi, S. Krishnan, C. Silva, Surface Reconstruction based on Lower
Dimensional Localized Delaunay Triangulation, Computer Graphics Fo-
rum 19 (3) (2000) 467–478.

[12] M. Gopi, S. Krishnan, A fast and efficient projection-based approach for
surface reconstruction, Proceedings. XV Brazilian Symposium on Com-
puter Graphics and Image Processing 1 (1) (2000) 179–186.

[13] M. Attene, M. Spagnuolo, Automatic Surface Reconstruction from Point
Sets in Space, Computer Graphics Forum 19 (3) (2000) 457–465.

[14] C. Kuo, H. Yau, A Delaunay-based region-growing approach to surface
reconstruction from unorganized points, Computer-Aided Design 37 (8)
(2005) 825–835.

[15] T. Dey, S. Goswami, Provable Surface Reconstruction from Noisy Sam-
ples, Computational Geometry 35 (1-2) (2006) 124–141.

[16] M. Siqueira, D. Xu, J. Gallier, L. G. Nonato, D. M. Morera, L. Velho, A
new construction of smooth surfaces from triangle meshes using paramet-
ric pseudo-manifolds, Computers & Graphics 33 (3) (2009) 331–340.

[17] B. Juttler, A. Felis, Least-squares fitting of algebraic spline surfaces, Ad-
vances in Computational Mathematics 17 (1) (2002) 135–152.

[18] N. Kojekine, V. Savchenko, I. Hagiwara, Surface reconstruction based on
compactly supported radial basis functions, Citeseer, 2004, pp. 218–231.

[19] Y. Ohtake, A. Belyaev, H.-P. Seidel, Ridge-valley lines on meshes via
implicit surface fitting, ACM SIGGRAPH 2004 1 (212) (2004) 609.

[20] X. Wu, M. Yu, W. Xia, Implicit fitting and smoothing using radial basis
functions with partition of unity, in: Ninth International Conference on
Computer Aided Design and Computer Graphics, IEEE Computer Soci-
ety, 2005, pp. 139–148.

[21] J. Barhak, a. Fischer, Parameterization and reconstruction from 3D scat-
tered points based on neural network and PDE techniques, IEEE Trans-
actions on Visualization and Computer Graphics 7 (1) (2001) 1–16.

[22] A. Gálvez, A. Iglesias, A. Cobo, J. Puig-Pey, J. Espinola, Bézier curve and
surface fitting of 3D point clouds through genetic algorithms, functional
networks and least-squares approximation, in: Proceedings of the 2007
international conference on Computational science and Its applications-
Volume Part II, Springer-Verlag, 2007, pp. 680–693.

[23] X. He, C. Li, Y. Hu, R. Zhang, S. X. Yang, G. S. Mittal, Automatic se-
quence of 3D point data for surface fitting using neural networks, Com-
puters & Industrial Engineering 57 (1) (2009) 408–418.

[24] U. Khan, A. Terchi, S. Lim, D. Wright, S. Qin, 3D freeform surfaces from
planar sketches using neural networks, in: Neural Information Processing,
Springer, 2006, pp. 651–660.

[25] F. Krause, a. Fischer, N. Gross, J. Barhak, Reconstruction of Freeform
Objects with Arbitrary Topology Using Neural Networks and Subdivi-
sion Techniques, CIRP Annals - Manufacturing Technology 52 (1) (2003)
125–128.

[26] T. Martinetz, K. Schulten, Topology representing networks, Neural Net-
works 7 (3) (1994) 507–522.

[27] J. C. R. Horn, R. A., Matrix Analysis, Cambridge University Press, 1990.
[28] P. Azariadis, Parameterization of clouds of unorganized points using dy-

namic base surfaces, Computer-Aided Design 36 (7) (2004) 607–623.
[29] H. Woo, E. Kang, S. Wang, K. H. Lee, A new segmentation method for

point cloud data, International Journal of Machine Tools and Manufacture
42 (2) (2002) 167 – 178.

[30] C. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.
[31] H. G. E. Rumelhart, D. E., R. J. Williams, Learning representations by

back-propagating errors, Nature 323 (1986) 533–536.
[32] J. Heaton, Introduction to Neural Netowrks with Java, Heaton Research,

2005.
[33] M. Alexa, Differential coordinates for local mesh morphing and deforma-

14

tion, The Visual Computer 19 (2) (2003) 105–114.
[34] M. Buhmann, Radial Basis Functions: Theory and Implementations,

Cambridge Monographs on Applied and Computational Mathematics,
2003.

[35] D. T. Lee, B. J. Schachter, Two algorithms for constructing a delaunay tri-
angulation, International Journal of Parallel Programming 9 (1980) 219–
242.

[36] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C.
McCallum, T. R. Evans, Reconstruction and representation of 3d objects
with radial basis functions, in: Proceedings of the 28th Computer graphics
and interactive techniques, SIGGRAPH ’01, 2001, pp. 67–76.

15

